Data Mining Implementation with Clustering Techniques for Drug Inventory Information in Antonius Hospital Pontianak

Antonius Anton(1*),


(1) Department of Computer Science, Universitas Bina Nusantara
(*) Corresponding Author

Abstract


Competition in the business world, especially in the pharmacy industry, requires developers to find a strategy that can increase sales of special drug sales by maximizing service to consumers. One way is to keep the availability of various types of drugs in the pharmacy warehouse. To find out what medicines are purchased by consumers, it can be done using basket analysis techniques, namely analysis of consumer buying habits. Detection of drugs that are often bought together is called the association rule. Medication is an important factor whose availability must be controlled properly in a hospital. The availability of drugs at the hospital will support hospital performance. One of the data mining methods that can be used from the above analysis is the clustering method, which is grouping data items into small groups so that each group has an essential equation. The evaluation results from this study are grouping drug data with clustering techniques to facilitate the process of grouping drugs based on drugs that are often used in a certain period of time

Keywords


Clustering; Implementation; Data Mining

Full Text:

PDF

References


Buulolo, E. (2013). Implementasi Algoritma Apriori Pada Sistem Persediaan Obat (Studi Kasus: Apotik Rumah Sakit Estomihi Medan). Pelita Inform. Budi Dharma, 4, 71-83.

Syamsuni, H. (2006). Farmasetika Dasar dan Hitungan Farmasi. Jakarta: Buku Kedokteran EGC

Nugraha, J. A. M., & Kusumawati, Y. (2014). Data Mining dengan Metode Clustering untuk Pengolahan Informasi Persediaan Obat pada Puskesmas Pandanaran Semarang. Universitas Dian Nuswantoro. Retrieved from http://eprints.dinus.ac.id/13153/

Muzakir, A., & Wulandari, R. A. (2016). Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Decision Tree. Scientific Journal of Informatics, 3(1), 19-26. https://doi.org/10.15294/sji.v3i1.4610

Kurniawan, E., Purnama, I. K. E., & Sumpeno, S. (2011). Analisa Rekam Medis untuk Menentukan Pola Kelompok Penyakit Menggunakan Klasifikasi dengan Decision Tree J48. Institut Sepuluh Nopember, Surabaya.1-8. Retreived from https://mmt.its.ac.id/publikasi/analisa-rekam-medis-untuk-menentukan-pola-kelompok-penyakit-menggunakan-metode-klasifikasi-dengan-algoritma-decision-tree-j48/

Taslim, T., & Fajrizal, F. (2016). Penerapan Algorithma K-Mean untuk Clustering Data Obat pada Puskesmas Rumbai. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, 7(2).108-114. https://doi.org/10.31849/digitalzone.v7i2.602

Bastian, A. (2018). Penerapan Algoritma K-Means Clustering Analysis pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka). Jurnal Sistem Informasi, 14(1), 28-34. https://doi.org/10.21609/jsi.v14i1.566

Yanto, R., & Khoiriah, R. (2015). Implementasi Data Mining dengan Metode Algoritma Apriori dalam Menentukan Pola Pembelian Obat. Creative Information Technology Journal, 2(2), 102-113. https://doi.org/10.24076/citec.2015v2i2.41

Aprilla, D., Baskoro, D. A., Ambarwati, L., & Wicaksana, I. W. S. (2013). Belajar Data Mining dengan Rapid Miner. Jakarta: Gramedia Pustaka Utama.

Sulastri, H., & Gufroni, A. I. (2017). Penerapan data mining dalam pengelompokan penderita thalassaemia. Jurnal Nasional Teknologi dan Sistem Informasi, 3(2), 299-305. https://doi.org/10.25077/TEKNOSI.v3i2.2017.29




DOI: 10.24235/eduma.v9i1.4011

Article Metrics

Abstract view : 53 times
PDF - 27 times

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020

View My Stats