Disclosure of Student Ability in Working on Higher-Order Thinking Skills Questions through Rasch Modeling

Ade Yulianto(1*), Aan Yuliyanto(2), Ghullam Hamdu(3), Lutfi Nur(4), Desi Fitriani(5), Noorhisham Hamzah(6),


(1) Elementary Education Study Program, School of Postgraduate Studies, Universitas Pendidikan Indonesia, Bandung
(2) Elementary Education Study Program, School of Postgraduate Studies, Universitas Pendidikan Indonesia, Bandung
(3) Primary Teacher Education Study Program, Universitas Pendidikan Indonesia Tasikmalaya Campus, Tasikmalaya
(4) Primary Teacher Education Study Program, Universitas Pendidikan Indonesia Tasikmalaya Campus, Tasikmalaya
(5) An-Nahl Islamic Elementary School, Tasikmalaya
(6) Kebangsaan Beranang School, Hulu Langat Selangor, Malaysia
(*) Corresponding Author

Abstract


Abstract

Information on students' ability in higher-order thinking obtained during the learning process can certainly provide an overview for teachers to evaluate appropriate and effective learning. In this context, how can a teacher properly carry out diagnostic and remedial teaching based on the information on student abilities obtained? Therefore, this study aims to provide a disclosure analysis technique for the acquisition of students' abilities in higher-order thinking. This research is one of the stages of Design-Based Research (DBR), which is a reflection to produce design principles and perfect their implementation. Determination of the research sample is done by using the purposive sampling technique. Data collection of students' ability in higher-order thinking was done through HOTS-based test questions developed based on the cognitive hierarchy adopted from Bloom's taxonomy. The results of the acquisition of students' abilities in higher-order thinking were then analyzed through Rasch modeling with the help of the Winsteps 3.75 application. Based on the results of Rasch modeling, it was obtained that the students' abilities were grouped into high, medium, and low categories and had a level of suitability of abilities that did not need to be reviewed, and there were no biased student abilities. The results of data processing and analysis of students' ability in higher-order thinking have implications for teacher actions in carrying out appropriate and effective learning evaluations as well as mapping students' abilities in higher-order thinking with unbiased conformity.

Keywords: student ability, HOTS-based test questions, rasch modeling.

 

Abstrak

Informasi kemampuan siswa dalam berpikir tingkat tinggi yang diperoleh selama proses pembelajaran tentunya dapat memberikan gambaran bagi guru untuk melakukan evaluasi pembelajaran yang tepat dan efektif. Dalam konteks tersebut, bagaimana seorang guru dapat secara tepat melakukan diagnostic and remedial teaching berdasarkan informasi kemampuan siswa yang diperoleh?. Maka dari itu, penelitian ini bertujuan untuk memberikan teknik analisis pengungkapan pemerolehan kemampuan siswa dalam berpikir tingkat tinggi. Penelitian ini merupakan salah satu tahapan dari Desain Based Reaserch (DBR), yakni refleksi untuk menghasilkan prinsip-prinsip desain dan menyempurnakan implementasinya. Penentuan sampel penelitian dilakukan dengan menggunakan teknik purposive sampling. Pengumpulan data kemampuan siswa dalam berpikir tingkat tinggi dilakukan melalui pengerjaan soal tes berbasis HOTS yang dikembangkan berdasarkan hirarki kognitif yang diadopsi dari taksonomi Bloom. Hasil pemerolehan kemampuan siswa dalam berpikir tingkat tinggi kemudian dianalisis melalui pemodelan rasch dengan berbantuan aplikasi winsteps 3.75. Berdasarkan hasil pemodelan Rasch diperolehlah pengelompokkan kemampuan siswa dengan kategori tinggi, sedang, dan rendah serta memiliki tingkat kesesuaian kemampuan yang tidak perlu ditinjau ulang dan tidak terdapat kemampuan siswa yang bias. Hasil pengolahan dan analisis data kemampuan siswa dalam berpikir tingkat tinggi berimplikasi pada tindakan guru dalam melaksanakan evaluasi pembelajaran yang tepat dan efektif serta pemetaan kemampuan siswa dalam berpikir tingkat tinggi dengan kesesuaian yang tidak bias.

Kata kunci: kemampuan siswa, soal tes berbasais HOTS, pemodelan rasch.


Full Text:

PDF

References


Abdallah, M. (2014). Design-Based Research (DBR) in Educational Enquiry and Technological Studies: A Version for PhD Students Targeting the Integration of New Technologies and Literacies into Educational Contexts. Online Submission.

Andrich, D. (1981). Book Review: Probabilistic Models for Some Intelligence and Attainment Tests (expanded edition: Georg Rasch Chicago: The University of Chicago Press, 1980, 199 pp., 15hardcover, 7 paperback. Applied Psychological Measurement, 5(4), 545–550.

Bestiyana, R. A. (2018). Profil Berpikir Kritis Siswa Smp Dalam Menyelesaikan Soal Higher Order Thinking Matematik Ditinjau Dari Gaya Kognitif Visualizer-Verbalizer. MATHEdunesa, 7(1).

Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1984). Bloom taxonomy of educational objectives. In Allyn and Bacon. Pearson Education.

Bond, T. G., & Fox, C. M. (2013). Applying the Rasch model: Fundamental measurement in the human sciences. Psychology Press.

Boone, W. J., Staver, J. R., & Yale, M. S. (2013). Rasch analysis in the human sciences. Springer.

Brogden, H. E. (1977). The Rasch model, the law of comparative judgment and additive conjoint measurement. Psychometrika, 42(4), 631–634.

Brookhart, S. M. (2010). How to assess higher-order thinking skills in your classroom. ASCD.

Carless, D. (2004). Issues in teachers’ reinterpretation of a taskâ€based innovation in primary schools. Tesol Quarterly, 38(4), 639–662.

Chaffey, G. W., Halliwell, G., & McCluskey, K. W. (2006). Identifying high academic potential in Canadian Aboriginal primary school children. Gifted and Talented International, 21(2), 61–70.

Fahmina, S. S., Masykuri, M., Ramadhani, D. G., & Yamtinah, S. (2019). Content validity uses Rasch model on computerized testlet instrument to measure chemical literacy capabilities. AIP Conference Proceedings, 2194(1), 20023.

Friyatmi, M. (2020). Assessing Students’ Higher Order Thinking Skills Using Multidimensional Item Response Theory. Problems of Education in the 21st Century, 78(2), 196.

Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales.

Goodwin, L. D., & Leech, N. L. (2003). The meaning of validity in the new standards for educational and psychological testing: Implications for measurement courses. Measurement and Evaluation in Counseling and Development, 36(3), 181–191.

Gorghiu, G., Drăghicescu, L. M., Cristea, S., Petrescu, A.-M., & Gorghiu, L. M. (2015). Problem-based learning-an efficient learning strategy in the science lessons context. Procedia-Social and Behavioral Sciences, 191, 1865–1870.

Hamdu, G., Fuadi, F. N., Yulianto, A., & Akhirani, Y. S. (2020). Items Quality Analysis Using Rasch Model To Measure Elementary School Students’ Critical Thinking Skill On Stem Learning. JPI (Jurnal Pendidikan Indonesia), 9(1), 61–74.

Heong, Y. M., Othman, W. B., Yunos, J. B. M., Kiong, T. T., Hassan, R. Bin, & Mohamad, M. M. B. (2011). The level of marzano higher order thinking skills among technical education students. International Journal of Social Science and Humanity, 1(2), 121.

Herrington, J., McKenney, S., Reeves, T., & Oliver, R. (2007). Design-based research and doctoral students: Guidelines for preparing a dissertation proposal. EdMedia+ Innovate Learning, 4089–4097.

Ivanjek, L., Planinic, M., Hopf, M., & Susac, A. (2017). Student difficulties with graphs in different contexts. In Cognitive and affective aspects in science education research (pp. 167–178). Springer.

Kang, H. (2017). Preservice teachers’ learning to plan intellectually challenging tasks. Journal of Teacher Education, 68(1), 55–68.

Karlimah, K., Andriani, D., & Suryana, D. (2020). Development of Mathematical Anxiety Instruments with a Rasch Model Analysis. The Open Psychology Journal, 13(1).

Nur, L., Nurani, L. A., Suryana, D., & Ahmad, A. (2020). Rasch model application on character development instrument for elementary school students. International Journal of Learning, Teaching and Educational Research, 19(3), 437–459.

Plan, Q. E. (2014). Improving students’ higher-order thinking competencies, including critical evaluation, creative thinking, and reflection on their own thinking. January.

Ratna, I., Yamtinah, S., Ashadi, M., Masykuri, M., & Shidiq, A. (2017). The Implementation of Testlet Assessment Instrument in Solubility and Solubility Product Material for Measuring Students’ Generic Science Skills. International Conference on Teacher Training and Education 2017 (ICTTE 2017).

Rofiah, E., Aminah, N. S., & Ekawati, E. Y. (2013). Penyusunan Instrumen tes kemampuan berpikir tingkat tinggi fisika pada siswa SMP. Jurnal Pendidikan Fisika, 1(2).

Rusmana, N., Hafina, A., Wardhany, R. O., & Suryana, D. (2020). Students’ Confidence Instrument Analysis in Poetry Learning through Rasch Model. The Open Psychology Journal, 13(1).

Saifer, S. (2018). HOT skills: Developing higher-order thinking in young learners. Redleaf Press.

Singh, C. K. S., Gopal, R., Ong, E. T., Singh, T. S. M., Mostafa, N. A., & Singh, R. K. A. (2020). Teachers Strategies to Foster Higher-Order Thinking Skills To Teach Writing. Malaysian Journal of Learning and Instruction, 17(2), 195–226.

Smith, R. M. (1986). Person fit in the Rasch model. Educational and Psychological Measurement, 46(2), 359–372. https://doi.org/10.1177%2F001316448604600210.

Sumintono, B. (2018). Rasch Model Measurements as Tools in Assesment for Learning. 1st International Conference on Education Innovation (ICEI 2017), 38–42.

Sumintono, B., & Widhiarso, W. (2014). Aplikasi model Rasch untuk penelitian ilmu-ilmu sosial (edisi revisi). Trim Komunikata Publishing House.

Sumintono, B., & Widhiarso, W. (2015). Aplikasi pemodelan rasch pada assessment pendidikan. Trim komunikata.

Utesch, T., Bardid, F., Huyben, F., Strauss, B., Tietjens, M., De Martelaer, K., Seghers, J., & Lenoir, M. (2016). Using Rasch modeling to investigate the construct of motor competence in early childhood. Psychology of Sport and Exercise, 24, 179–187.

Yusuf, I., Widyaningsih, S. W., Prasetyo, Z. K., & Istiyono, E. (2021). The analysis of self directed learning (SDL) through Rasch modeling: Case study on prospective teachers during the use of e-learning with HOTS-oriented in the period of Covid-19 pandemic. AIP Conference Proceedings, 2330(1), 50006.




DOI: 10.24235/al.ibtida.snj.v8i1.7865

Article Metrics

Abstract view : 2 times
PDF - 1 times

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Al Ibtida: Jurnal Pendidikan Guru MI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

AL IBTIDA Journal Indexed By:

        

 

  

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats

 

Al Ibtida: Jurnal Pendidikan Guru MI Published by Department of Madrasah Ibtidaiyah Teacher Education, Faculty of Tarbiyah and Teacher Training, IAIN Syekh Nurjati Cirebon In Collaboration with Perkumpulan Dosen Pendidikan Guru Madrasah Ibtidaiyah (PD PGMI) Indonesia.

Editorial Office:

FITK Building, 5th Floor, Department of Madrasah Ibtidaiyah Teacher Education, Faculty of Tarbiyah and Teacher Training, IAIN Syekh Nurjati Cirebon.  Perjuangan Street of Sunyaragi, Cirebon City, West Java, Indonesia 45132 Phone. 0231-481264, Fax. 0231-489926, Email: alibtida@syekhnurjati.ac.id/ alibtida2@gmail.com